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a b s t r a c t

This paper presents easily verifiable sufficient conditions on sequence spaces that guarantee representa-
tion of preference orders. Our approach involves identifying a suitable subset of the set of alternatives,
such that (a) the preference order is representable on this subset, and (b) the subset has the property
that for each alternative, there is some element in this subset which is indifferent to it. We follow Wold
in choosing this subset to be the diagonal. Our first result uses a weak monotonicity condition (on the
diagonal), and a substitution condition, andmay be identified as the essence ofWold’s contribution. In the
second result, we show that one can obtain a Wold-type representation result when weak monotonicity
is replaced by a weak continuity condition. We use the countable order-dense characterization of
representability in the proofs of both results, thereby integrating the contributions of Wold (1943) and
Debreu (1954). Through a series of examples we show that our representation results are robust; they
cannot be improved upon by dropping any of our conditions. An example is also presented to show
that existence of degenerate indifference classes is compatible with the representation of monotone
preferences. Our study thereby indicates thatwhile the presence of substitution possibilities can be useful
in representing preferences, they are not necessary for such results to hold.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

There are two principal methods leading to the representability
of a preference order by a numerical utility function. The first is due
to Wold (1943) who proposed that if preferences were monotone,
and if for every consumption bundle, there was a unique diagonal
bundle to which it was indifferent, then the scalar associated with
that diagonal bundle can be used as a numerical measure of the
utility of the consumption bundle. The second is due to Debreu
(1954), who showed that if the set of consumption bundles con-
tained a countable order-dense subset, then the preference order
can be represented by a numerical utility function.

The condition of Debreu turns out to be necessary as well
for the numerical representation of a preference order [see Fish-
burn (1970), Kreps (1988) and Bridges and Mehta (1995)]. On
the other hand, following Debreu (1954), non-representability
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crucially builds on the lexicographic preferences1 he introduced.
The inability to represent lexicographic preferencesmay be viewed
as arising from the fact that there are no substitution possibilities,
since each consumption bundle is indifferent only to itself.

The emphasis on substitution possibilities for the represen-
tation of preference orders appear in the writing of Georgescu-
Roegen (1954). In his study on consumer preferences, Chipman
(1960, p. 210) says that the countable order dense property ‘‘has
little intuitive appeal’’. He suggests an Axiom of Substitution as
part of his formal axiomatic set up. TheWold approach can be seen
as identifying a specific form of substitution which is sufficient to
guarantee representability of monotone preferences (see Beardon
and Mehta (1994) for an exposition of the Wold approach).

The substitution condition used by Wold is not necessary, even
for the class of monotone preferences. Nevertheless, because of
its transparent geometric intuition, the method of Wold has been
widely used to establish numerical representation of preference
orders under a variety of different assumptions on preferences
[see, for example, Diamond (1965), Asheim et al. (2012), Mitra and
Ozbek (2013) and Banerjee (2014)].2

1 This order is also called the ‘‘dictionary order’’ [see Munkres (2000)] and was
known to set theorists and topologists alike; see Sierpinski (1965, p. 221).
2 In fact, the idea of Wold is so compelling that it is now even included in a basic

text on Intermediate Microeconomics to illustrate how a utility function can be
found to represent preferences (see Varian (2014)).
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We undertake an analysis of theWold approachwith the inten-
tion of exploring the role that substitution possibilities play as a
sufficient condition for representation. In doing so, our intention
is to preserve the spirit of his approach in emphasizing the use
of easily verifiable assumptions on preferences, giving a notable
priority to applicability of our results over abstract generality.
Given that objective, we strive of course to provide the weakest
possible assumptions onpreferences to guarantee representability.

Our approach to Wold-type representation results involves
identifying a nonempty subset of the set of alternatives, such that
(a) the preference order is representable on this subset, and (b) the
subset has the property that for each alternative, there is some
element in this subset which is indifferent to it. This two-step
procedure is both necessary and sufficient for representability,
and is stated as Lemma 1 (in Section 3). The judicious choice of
this subset is central to this approach, and in developing Wold-
type representation results, we follow his lead in choosing the
‘‘diagonal’’ of the set of alternatives as the subset of interest.

In applying Lemma 1 to obtain useful representation results,
step (a) would then involve showing that the preference order is
representable on the diagonal. This step cannot be accomplished
without further assumptions on the preference order, and to clarify
this important point (among others)we analyze in detail the exam-
ple of Fishburn (1970), in Example 2 of Section 3. We propose two
different assumptions (confined to the diagonal), each of which
allows us to accomplish step (a): a weakmonotonicity assumption
(in Theorem 1), and a weak continuity assumption (in Theorem 2),
known as scalar continuity. In both cases, step (a) is completed
by showing that each of these assumptions ensures the countable
order dense property on the diagonal. In this way, we integrate
elements of the approaches of Wold (1943) and Debreu (1954) to
representation theorems.

With the choice of the diagonal of the set of alternatives as the
relevant subset in applying Lemma 1, step (b) of the lemma can be
seen as essentially a substitution condition. One possibility in car-
rying out this step is to assume it directly, as we do in Theorem 1,
where we refer to this substitution condition (justifiably) as the
Wold condition. The other is to provide more ‘‘primitive’’ condi-
tions which ensure theWold condition. One such set of conditions
is provided in Theorem 2, where we extend the scalar continuity
requirement to the entire space of alternatives, and simultaneously
assume that for each alternative, there are diagonal elements in its
upper and lower contour sets.

Theorems 1 and 2 are, in our opinion, two very useful rep-
resentation results, oriented to applications. In applying them,
one would check the conditions mentioned in the previous two
paragraphs, whichwe consider to be easily verifiable. In particular,
in order to apply the results, one does not have to check the count-
able order dense property. We relate our representation results
to comparable results in the literature in Section 3.2.3, indicating
that the conditions we use are indeed very weak. We also note
(see remarks (iii) and (iv) following Theorem 2) that, while there
is considerable overlap of coverage in the two theorems, there are
scenarios which are covered by Theorem 2 but not by Theorem 1,
and similarly by Theorem 1 but not by Theorem 2.

Theorem 1 cannot be improved by dropping from its statement
either of the conditions used. Weak monotonicity on the diagonal
is not sufficient by itself to ensure representability, as is clear from
the example of lexicographic preferences. And, the example of
Fishburn (1970), analyzed in Example 2 in Section 3.2.2, shows
that the Wold condition is also not sufficient by itself to ensure
representability.

In Example 1 (in Section 3.2.1) we show that, in the statement
of Theorem 2, we cannot drop the (non-emptiness) condition that
for each alternative, there are diagonal elements in its upper and
lower contour sets; so, scalar continuity by itself cannot ensure

representability. Since the Wold condition always ensures the
nonemptiness condition, Example 2 also shows Theorem 2 would
not be valid if the scalar continuity condition was dropped from its
statement.

Finally, we study the possibility of representation when there
are absolutely no substitution possibilities: the indifference set
pertaining to each bundle is degenerate. We present an example
(see Example 3 in Section 4) of a preference order for which the
indifference set for every alternative is a singleton but the order
is still representable. This example shows that substitution condi-
tions (conditions that deal with properties of indifference classes
associated with elements of the domain of preferences) cannot be
necessary for representation.

To understand the significance of our example let us provide
a very rough paraphrase of the intuition for representability in
the context of consumer demand theory associated with the ex-
tent of substitutability from any given consumption bundle. The
problem with the lexicographic preference order is that it has
no substitution possibilities at all: each point in the commodity
space is indifferent only to itself. This entails that the preference
order is extremely sensitive (to changes in any direction of the
two-dimensional real space) and the set of real numbers is not
large enough to capture this sensitivity. If substitution possibilities
are present, so that one has non-degenerate ‘‘indifference curves’’,
then ‘‘many’’ points can be assigned the same real number, thereby
economizing on the use of real numbers and making it feasible to
represent the preference order. Perhaps, the most explicit state-
ment of the above intuition for non-representability appears in
Mas-Colell et al. (1995, p. 46), in their informal discussion of the
lexicographic preference order. ‘‘With this preference ordering, no
two distinct bundles are indifferent; indifference sets are single-
tons. Therefore, we have two dimensions of distinct indifference
sets. Yet, each of these indifference sets must be assigned, in an
order-preserving way, a different utility number from the one
dimensional real line’’.

However, lest the reader gets carried away by this argument,
the authors add a sentence of caution,‘‘In fact, a somewhat subtle
argument is actually required to establish this claim rigorously’’.
Our example can also be seen as an elaboration on this sentence
of caution. For, just like the lexicographic preference order, our
example has (strongly) monotone preferences, with indifference
sets that are singletons. And yet the example provides in a sense
exactly the opposite scenario to the lexicographic order so far as
the representation issue is concerned. The example is not entirely
straightforward to construct; it draws onmethodswhich appear in
the papers by Lindenbaum (1933) and Sierpinski (1934).

2. Preliminaries

2.1. A sequence space

Let N be the set of non-negative integers, and R the set of real
numbers. Denote RN by Z . For z, z ′

∈ Z, we write z ′
≥ z if z ′

t ≥ zt
for all t ∈ N; we write z ′ > z if z ′

≥ z and z ′
̸= z; and we write

z ′
≫ z if z ′

t > zt for all t ∈ N.
Let Y be a nonempty connected set inR such that [0, 1] ⊂ Y and

X = Ym where m ∈ M = N ∪ {∞}; such a space will be called a
sequence space.3 The constantm-dimensional vector (1, 1, 1, . . . .)
is denoted by e; clearly the vector e ∈ X .

A particular subset of X , the diagonalD, is of special significance
in our paper. Define:

D = {x ∈ X : there exists λ ∈ Y such that x = λe}

3 These conditions on Y amount to saying that Y is an interval in R. See Royden
(1988, p. 183).
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2.2. Preference orders and utility functions

We will be concerned with preferences between sequences in
the sequence space X,whichwill also be referred to as alternatives.
These preferences will be expressed by a binary relation ≿ on
X × X .4 Throughout, we will confine our attention to those binary
relations≿which are linear orders; that is, which are complete (for
every x, y ∈ X either x ≿ y or y ≿ x or both must hold) and
transitive (for x, y, z ∈ X if x ≿ y and y ≿ z hold, then x ≿ z must
hold).Wewill often refer to a linear order≿ on X×X as a preference
order. The asymmetric and symmetric parts of ≿ are denoted as
usual by ≻ and ∼, and are interpreted as strict preference and
indifference respectively.

A linear order ≿ on X ×X is called representable if there is some
u : X → R such that for all x, x′

∈ X

x′ ≿ x if and only if u(x′) ≥ u(x) .

In this case, we refer to u as a utility function that represents the
preference order ≿ .

3. Representation of preference orders

The complete characterization of a preference order which can
be represented by a utility function is given by a joint condition
on the sequence space X and the preference order ≿ on X × X . It
is called the countable order-dense property [see Fishburn (1970),
Kreps (1988) and Bridges and Mehta (1995) for a statement and
proof of this result]. This property holds if there is a countable
subset C of X, such that given any x, x′

∈ X with x ≻ x′, there
is z ∈ C, such that x ≿ z ≿ x′.

In general, this countable-order dense property can be difficult
to check directly in applications. Its principal merit is that it is
a useful method for developing alternative criteria for represen-
tation of preference orders, which are themselves more easily
verifiable. An exemplar of such easily verifiable criteria is theWold
type of conditions. The contribution ofWold (1943), generally con-
sidered to be the first rigorous solution in the economics literature
to the problem of representation of preference orders, historically
pre-dates by a decade the introduction by Debreu (1954) of the
countable order-dense property as a key concept in this literature.
However, for the reason mentioned above, it is useful to view the
Wold type of conditions for representation of preference orders
through the lens of the countable-order dense property, and we
explore this point of view in this paper.

Before discussing the conditions which can be easily identified
to be of the ‘‘Wold type’’, it is useful to state a more general
condition of which the Wold-type conditions are particular cases.
This general condition involves the existence of a nonempty subset
S of X such that ≿ is representable on S, and having the property
that for each x ∈ X there is some s ∈ S such that x ∼ s.5

Lemma 1. A linear order ≿ on X × X is representable if and only if
it satisfies the following condition: there is a nonempty subset S of X
such that (a) ≿ is representable on S × S, and (b) for each x ∈ X there
is some s ∈ S such that x ∼ s.

Proof. (Necessity) Necessity of the condition for representability
is obvious, since one can choose S ≡ X .

(Sufficiency) Let v : S → R be a representation of ≿ on S × S.
Given any x ∈ X, define:

E(x) = {s ∈ S : s ∼ x} (1)

4 The phrase ‘‘a binary relation on X ’’ is often used for a binary relation on X × X .
5 This kind of two-step approach is not new. Explicit use of this approach ismade

inArrowandHahn (1971),Monteiro (1987), Beardon andMehta (1994) andWeibull
and Voorneveld (2016), among others.

and note that the set E(x) is a nonempty subset of S.Define the set:

u(x) = {v(s) : s ∈ E(x)} for each x ∈ X (2)

Note that while the set E(x) may have multiple elements, the set
u(x) is a singleton. This follows from transitivity of ≿ and the fact
that v represents ≿ on S × S. Thus, u is actually a real-valued
function on X .

It remains to check that u represents ≿ on X × X . Let x, x′
∈ X,

with x ∼ x′. Then E(x) = E(x′) by transitivity of ≿ on X × X, and so
u(x) = u(x′) by (2).

Next, let x, x′
∈ X, with x′

≻ x. We can find s, s′ ∈ S, such that
x ∼ s and x′

∼ s′. Then, by (2), u(x) = v(s) and u(x′) = v(s′). Since
x′

≻ x, we have s′ ≻ s (by transitivity of ≿ on X × X ), and so
v(s′) > v(s), since v represents ≿ on S × S. Thus, u(x′) > u(x). ■

Informally stated, use of the above result involves identifying
judiciously a subset S of X, which (a) has some restrictive feature,
making the representation on S relatively easier to check than on X
itself, and yet is (b) ‘‘rich enough’’ so that it can effectively stand in
as a proxy for X, so far as the indifference relation is concerned.
Thus, a balancing act is required. Note that, compared with the
countable order dense property where a similar judicious choice
of a countable set is involved, S is very likely to be uncountable.

Wold himself chose S to be the diagonal D of X, and in present-
ing two results of theWold type (in the subsections below), wewill
focus on his choice. This choice has two important consequences.
It makes the representation issue that one needs to verify in the
first part of the condition (in Lemma 1) as one which is essentially
confined to the reals. If this more restricted representation issue is
going to be addressed by appealing to the countable order dense
property (as we hinted at above), then the set of rationals will very
likely play an important role.

It also makes us recognize that the second part of the condi-
tion (in Lemma 1) is essentially related to the economic idea of
substitution, of being compensated for the loss of some portion of
one desirable good by more of another desirable good. This role
of substitution possibilities, which in our opinion underlies the
Wold approach, is difficult to see directly in the characterization
of representability by the countable order dense property.

3.1. Wold type representation with monotonicity

Wold (1943) proposed that if preferences were monotone, and
if for every consumption bundle, there was a unique diagonal
bundle to which it was indifferent, then the scalar associated
with that diagonal bundle can be used as a numerical measure
of the utility of the consumption bundle. The condition used by
Wold is not necessary, even for the class of monotone preferences.
Nevertheless, because of its transparent geometric intuition, the
method of Wold has been widely used to establish numerical
representation of preference orders under a variety of different
assumptions on preferences [In the context of intertemporal social
preferences, see Diamond (1965), Asheim et al. (2012), Mitra and
Ozbek (2013), Banerjee (2014), among others].

In this subsection, we present our version of Wold’s repre-
sentation theorem. In our version, we use significantly weaker
assumptions. Thus, we allow for preferences which are not nec-
essarily monotone on the entire space of alternatives; we impose
themonotonicity requirement only on the diagonal, and only in its
weak form.

Diagonal Monotonicity (DM): If λ, µ ∈ Y , and λ > µ, then
λe ≿ µe.

Further, given an alternative, the requirement that there be
a unique diagonal bundle to which it is indifferent, is also not
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necessary. We impose only the requirement that given an alterna-
tive, there exists some diagonal bundle to which it is indifferent.6

Wold Condition (W): For every x ∈ X, there is λ ∈ Y , such that
x ∼ λe.

An important observation about our version of Wold’s repre-
sentation result is that it does not use any conditionwhich involves
sensitivity of preferences. Thus, the preferences can be entirely
insensitive to changes in the alternatives, or insensitive to such
changes in parts of the relevant space of alternatives.

Theorem 1. Let ≿ be a preference order on X × X which satisfies
conditions DM and W. Then, ≿ is representable.

Proof. We will use Lemma 1 to establish the result. To this end,
choose S ≡ D. Then, the second part of the condition used in
Lemma 1 is satisfied by using condition W. Thus, it remains to
verify that ≿ can be represented on D, and this is accomplished
by using condition DM.

Let us define the set:

C = {λe : λ ∈ Y is rational}

Then C is a countable set.
Let x, x′

∈ D, with x′
≻ x. Then, there exist λ, λ′

∈ Y such that
x = λe and x′

= λ′e, and:

λ′e ≻ λe (3)

It follows from (3) that λ′
̸= λ. If λ > λ′, then by condition DM,

we would have:

λe ≿ λ′e

But thiswould contradict (3). Thus,wemust haveλ ≤ λ′, and since
λ′

̸= λ, we can infer that:

λ′ > λ (4)

Using (4), we can choose a rational µ ∈ Y , such that: λ′ > µ >
λ.Using conditionDM, and λ′ > µ,we obtain: λ′e ≿ µe. Similarly,
using condition DM, and µ > λ, we obtain:µe ≿ λe. Thus, we
have:

x′
≡ λ′e ≿ µe ≿ λe ≡ x

That is, C is a countable order dense subset ofD.Applying Lemma II
in Debreu (1954, p. 161), the preference order≿ can be represented
on D. ■

Remarks. (i) It is clear that Theorem 1 is valid when condition DM
is replaced by: if λ, µ ∈ Y , and λ > µ, then µe ≿ λe. That is, the
requirement is that the diagonal monotonicity holds uniformly in
one direction or the other. Our theorem uses DM because this is
the version commonly used in the theory of consumer preferences
when the components of an alternative x are desirable goods; it
is also natural in the theory of intertemporal social preferences,
indicating positive association between individual utilities (com-
ponents of an alternative x) and social preferences.

(ii) Theorem 1 would not be valid if we dropped the condition
DM from its statement. This can be seen from Example 2 discussed
in Section 3.2.2. It would also not be valid if we dropped the
conditionW from its statement, since the lexicographic preference
order in R2 satisfies DM but is not representable.

(iii) Conditions related to (and stronger than) DM have been
used in the literature on representation of preference orders.
Monotonicity is often invoked on the entire space of alternatives,
in its weak (Mitra and Ozbek, 2013) or strong forms, as defined
below.

6 In the language commonly used in the theory of consumer preferences, this
weakening allows for ‘‘thick indifference curves’’.

Monotonicity (M): For x, y ∈ X with x ≥ y we must have x ≿ y.

Strong Monotonicity (SM): ≿ satisfies Monotonicity and when
x > y, we have x ≻ y.

The strong form SM is referred to as the Pareto condition (or
the Strong Pareto condition) in the context of intertemporal social
preferences defined on the utility streams of various generations.

On the other hand, a stronger monotonicity condition than DM,
but confined to the diagonal, has also been used (Banerjee, 2014).

Diagonal Pareto (DP): For λ, µ ∈ Y with λ > µ we must have
λe ≻ µe.

3.2. Wold type representation without monotonicity

The general perception is that some form of monotonicity
of preferences is needed for a Wold-type representation result,
even though it is recognized that the monotonicity is of a weak
form (see, for instance, Beardon and Mehta (1994)). Theorem 1
is definitely of this mold, and one can see how the weak form
of monotonicity, imposed only on the diagonal (condition DM)
suffices to guarantee representation, in the presence of the Wold
substitution condition (conditionW).

However, Lemma 1 indicates that theWold-type of representa-
tion theorem need not be inherently dependent on monotonicity
of preferences, even in a weak form. The two-part condition used
in Lemma 1 points to the general approach underlying Wold-type
representation theorems, and prompts us now to present such a
result without monotonicity.

The concept that replaces monotonicity is a weak form of con-
tinuity known as scalar continuity, which has already been used
in representation results by Mitra and Ozbek (2013) and Banerjee
(2014).

For each x ∈ X, let us define:

A(x) = {λ ∈ Y : λe ≿ x} and B(x) = {λ ∈ Y : x ≿ λe}

Then the requirement of scalar continuity is formally expressed as
follows.

Scalar Continuity (SC): For each x ∈ X, the sets A(x) and B(x) are
closed subsets of Y .

However, we do need to guarantee both parts of the condition
in Lemma 1, and we ensure this by explicitly postulating:

Non-Emptiness (NE): For each x ∈ X, the sets A(x) and B(x) are
nonempty subsets of Y .

Before proceeding to our next result, let us note that, in our
approach to Theorem 1, condition DM ensures representation on
the diagonal (corresponding to condition (a) in Lemma 1), and
condition W ensures the substitution feature of condition (b) in
Lemma 1. This clean division of the roles of the assumptions in
Theorem 1 does not hold in our next result (Theorem 2). Thus,
choosing S = D and using Lemma 1, we note that condition SC by
itself can be used to validate part (a) of the condition in Lemma 1;
however,we use both condition SC and conditionNE to ensure part
(b) of the condition of Lemma 1.

There is a payoff, though, of this observation. If one is seeking
more primitive assumptionswhich imply conditionW (in applying
Theorem 1), it is reassuring to know that conditions SC and NE
do ensure that condition W holds. That is, conditions SC and NE
jointly ensure the substitution possibilities that underlie the Wold
approach.

The relationship between condition W and condition NE (by
itself) may also be noted. Clearly W implies that NE holds. The
converse is not true, as is clear from the lexicographic preference
order in R2.

The monotonicity conditionM also ensures that NE is satisfied.
But, even though M also ensures DM, it does not suffice to yield
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representation, as is clear from the lexicographic preference order
in R2. It also illustrates the fact that condition M does not imply
conditionW.

Theorem 2. Let ≿ be a preference order on X × X which satisfies
conditions SC and NE. Then, ≿ also satisfies condition W, and is
representable.

Proof. Given any x ∈ X, we know that A(x) and B(x) are both
nonempty (by condition NE), and A(x) ∪ B(x) = Y (since ≿ is a
preference order). Further, by condition SC, we know that A(x) and
B(x) are closed subsets of Y . Since Y is connected, we infer that:
A(x) ∩ B(x) ̸= φ. This implies that conditionW holds.

We can use Lemma 1 to establish the representation result. To
this end, choose S ≡ D. Then, condition (b) in Lemma 1 is satisfied
by using condition W. Thus, it remains to verify that ≿ can be
represented on D.

Let us define the set:

C = {λe : λ ∈ Y is rational}

Then C is a countable set.
Consider any x, y ∈ D with x ≻ y. The sets A(x) and B(y) are

nonempty (since x, y ∈ D) and closed subsets of Y (by condition
SC). Further, they are disjoint. [For if there is some λ ∈ A(x)∩ B(y),
then λe ≿ x ≻ y ≿ λe, which contradicts the fact that ≿ is
a preference order]. Since Y is a connected set, we cannot have
A(x)∪B(y) = Y . Thus, there is some λ′

∈ Y , such that λ′
̸∈ A(x) and

λ′
̸∈ B(y). That is, x ≻ λ′e and λ′e ≻ y. Since λ′

∈ Y , we can find a
sequence {λn

} of rationals in Y , such that λn
→ λ′ as n → ∞.

We claim that there is N(x) ∈ N, such that for all n ≥ N(x), we
have x ≻ λne. For, if this does not hold, then there is a subsequence
{λnr } of {λn

}, such that λnr → λ′ as nr → ∞, and λnr e ≿ x for all
nr . Since A(x) is a closed subset of Y (by condition SC) we must
therefore have λ′e ≿ x, which contradicts the fact that x ≻ λ′e.
This establishes the claim.We can similarly establish the claim that
there is N(y) ∈ N, such that for all n ≥ N(y), we have λne ≻ y.

Pick any n ≥ max{N(x),N(y)}. Then, we have x ≻ λne ≻ y.
Since λne ∈ C, we have now found an element z ∈ C such that
x ≻ z ≻ y. That is, the preference order ≿ has the countable order
dense property on D and is therefore representable by Lemma II in
Debreu (1954). ■

Remarks. (i) A useful observation that emerges from establishing
both Theorems 1 and 2 by using Lemma 1 is that either DM or
SC will ensure the representability of a preference order ≿ on the
diagonal D. Further, it will be noted from the proof of Theorem 2
that in verifying the representability of ≿ on D, one only uses SC
confined to D. The example of Fishburn (1970), which we analyze
in detail in Example 2, shows that one would need some condition
to ensure the representability of a preference order ≿ on the
diagonal D.

(ii) The lexicographic preference order ≿ on R2 is not repre-
sentable. It is interesting to view this non-representation result
in the light of the two representation theorems presented above
(at the risk of repeating some of our earlier observations regarding
it). The lexicographic preference order ≿ clearly satisfies DM, but
Theorem 1 is inapplicable because condition W fails. On the other
hand, it clearly satisfies NE, but Theorem 2 is inapplicable because
condition SC fails. In terms of our unified treatment relying on
Lemma 1, it is worth observing that its inapplicability arises from
the failure of condition (b). By choosing S = D in Lemma 1, we
can ensure representability of the lexicographic preference order
on D by using DM. But, this representability cannot be extended to
the rest of the space X = R2 because W fails; even though NE is
satisfied, recall that we used both SC and NE to ensure W, and SC
fails for the lexicographic preference order.

(iii) Theorem 2 does expand on Theorem 1 in covering cases of
Wold-type representation of preference orders. We now present
an example of an instance where representation follows, using
Theorem2, evenwhenDM fails (so that Theorem1 is inapplicable).

Consider the following binary relation on X ≡ Y 2 where Y =

[0, 1]. For x, y ∈ X we define:

(x1, x2) ≿ (y1, y2) iff f (
x1 + x2

2
) ≥ f (

y1 + y2
2

) (5)

where f : [0, 1] → [0, 1] is given by

f (t) = t − t2 for t ∈ [0, 1]

Clearly from the definition of ≿ it follows that ≿ is a preference
order. To verify SC, let x ∈ X and λn

∈ [0, 1] for each n ∈ N, with
x ≿ (λn, λn). Under the assumption that λn converges to some λ

as n → ∞ we need to show that x ≿ (λ, λ). We obtain from
x ≿ (λn, λn) and (5) that f ((x1 + x2)/2) ≥ f (λn) holds. Since f is
continuous on [0, 1] and λ ∈ [0, 1], it follows that f (λn) → f (λ)
as n → ∞. Finally as weak inequalities are preserved in the limit
we must have f ((x1 + x2)/2) ≥ f (λ) implying x ≿ (λ, λ) (from (5)).
This establishes that B(x) is closed. A similar argument also shows
that A(x) is closed for every x in X, and establishes SC.

Condition NE follows easily since it can be verified that
(1/2, 1/2) ∈ A(x) and (0, 0) ∈ B(x) for all x ∈ X . Theorem 1 (or
direct inspection of the definition itself) can be invoked to claim
that the order is representable. In fact, the stronger condition W
is also satisfied by ≿ . To see this, note that given any x ∈ X,

we can define λ = (x1 + x2)/2. Then, λ ∈ [0, 1], and we have:
f ((x1 + x2)/2) = f ((λ + λ)/2), so λe ∼ x.

The nature of the function f guarantees that the preference
order ≿ violates condition DM. This follows from noting that f
attains its (unique) maximum at (1/2) and is strictly increasing in
the sub-domain [0, 1/2) and strictly decreasing in the sub-domain
(1/2, 1].

(iv) On the other hand, Theorem 1 is applicable in some cases,
where Theorem2 is not.Wenowpresent an example of an instance
where representation follows, using Theorem1, evenwhen SC fails
(so that Theorem 2 is inapplicable).

Let X = Y 2, where Y = [0, 1]. Define u : X → R by:

u(x1, x2) =

{
0 for (x1 + x2)/2 ≤ (1/2)
1 for (x1 + x2)/2 > (1/2) (6)

Now, define the binary relation ≿ on X × X by:

x′ ≿ x if and only if u(x′

1, x
′

2) ≥ u(x1, x2) (7)

Clearly from (6) and (7) it follows that≿ is a preference order. It
satisfies conditionDM, since ifλ andλ′ belong to [0, 1], andλ′ > λ,

then u(λ′e) = 0 and u(λe) = 0 when λ′
≤ (1/2), and u(λ′e) = 1

while u(λe) ≤ 1 when λ′ > (1/2). Thus, in either case λ′e ≿ λe.
Given any x ∈ X, we can define λ = (x1 + x2)/2. Then,

λ ∈ [0, 1], and for λe ∈ D, we have:

(λ + λ)/2 = {[(x1 + x2)/2] + [(x1 + x2)/2]}/2 = (x1 + x2)/2

and so u(x1, x2) = u(λe). Thus, λe ∼ x, and so condition W is
satisfied.

We can nowuse Theorem1 to claim that≿has a representation.
Of course, we already know that u given by (6) is a representation
of ≿; but the point to be made here is that Theorem 1 is applicable
to the preference relation defined by (7) to guarantee a represen-
tation.

Theorem 2 is, however, not applicable, because condition SC is
violated. To see this, define x = (2/3)e, and note that u(x) = 1.
Now, A(x) = {λ ∈ [0, 1] : λe ≿ x} = ( 12 , 1] which is not a closed
subset of Y .
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3.2.1. Role of condition NE
Condition NE used in Theorem 2 may be viewed as a condition

indicating compensation possibilities but (as already noted above)
it is weaker than the substitution conditionW of Wold. [Condition
W implies that NE holds; the converse is not true, as is clear from
the lexicographic preference order in R2

].
In this section we study its role in Theorem 2 by providing an

example of a preference order which satisfies SC but NE fails and
the order is not representable. Thus Theorem 2 would not be valid
if we drop NE from its statement.

Example 1. Consider the sequence spaceX = Y 2 whereY = [0, 1].
Define the following subsets of X : V = {x ∈ X : x1 = 1 and
0 ≤ x2 < 1}, D = {x ∈ X : there is λ ∈ Y such that x = (λ, λ)} and
R = X \ (V ∪ D).

Define a binary relation ≿ on X × X as follows: (i) For any
x, y ∈ V ∪ R we say x ≿ y iff x ≥L y (where ≥L is the standard
lexicographic ordering on R2); (ii) for any x ∈ D and y ∈ R we
define x ≻ y, (iii) for [x ∈ V and y ∈ D] or [x ∈ D and y ∈ V ] or
[x, y ∈ D] we declare x ≿ y iff min{x1, x2} ≥ min{y1, y2}.

Preference order: Completeness follows from observing that the
sets V ,D and R on which ≿ is defined along with (i)–(iii) exhausts
all possibilities of comparisons for ordered pairs in X .

Transitivity: Let x, y, z ∈ X such that x ≿ y and y ≿ z. We need to
show that x ≿ z holds. Transitivity is verified for the binary relation
by considering different cases pertaining to membership of pairs
across the definitions (i)–(iii).

Before coming to the proof of transitivity, let us make a prelim-
inary point. If x, y ∈ X are such that both belong to V , then since
x1 = 1 = y1, (i) tells us that x ≿ y iff x2 ≥ y2. In other words,
x ≿ y iff min{x1, x2} ≥ min{y1, y2}. This leads us to the following
observation, using (iii):

For x, y ∈ V ∪ D, we have x ≿ y iff min{x1, x2} ≥ min{y1, y2} (O)

We now come to the proof of transitivity, and we break up our
analysis into two cases: (I) x ∈ R; (II) x ∈ V ∪ D.

Case (I): In this case x ≿ y dictates (by (i) and (ii)) that y ∈ R and
y ≿ z similarly dictates that z ∈ R. Thus, we have x, y, z ∈ R and
transitivity of ≿ follows from the transitivity of the lexicographic
order.

Case (II): The following exhaustive possibilities need to be ad-
dressed: (a) y ∈ R and z ∈ V ∪ D, (b) y, z ∈ R, (c) y ∈ V ∪ D
and z ∈ R, (d) y ∈ V ∪ D and z ∈ V ∪ D.

Observe that from the definition of the binary relation ≿ it
follows that if y ∈ R and y ≿ z, then z ̸∈ V ∪ D (by (i) and (ii)).
This means possibility (a) cannot occur. In possibilities (b) and (c),
we have z ∈ R, while x ∈ V ∪ D. Thus, by (i) and (ii), we have
x ≻ z, establishing transitivity for these possibilities. So, we are
left only with the possibility (d), where we have x, y, z ∈ V ∪ D.
Here, x ≿ y dictates (by (O)) that min{x1, x2} ≥ min{y1, y2} and
y ≿ z similarly dictates (by (O)) that min{y1, y2} ≥ min{z1, z2}.
Thus, we have min{x1, x2} ≥ min{z1, z2}. Since x, z ∈ V ∪ D, (O)
now dictates that x ≿ z, establishing transitivity for possibility (d).

Condition SC: Consider x ∈ R. Observe that by (ii) for any y ∈ D
we have y ≻ x, showing that for each x ∈ R the set A(x) must
be [0, 1], hence closed. For x ∈ D (with x = (λ, λ)) we must have
A(x) = [λ, 1] (using (iii))whenλ < 1 andA(x) = {1}withλ = 1; in
both casesA(x) is closed. For every x ∈ V , using (iii) in the definition
of ≿ we must have A(x) = [x2, 1]. This shows that A(x) is closed
when x ∈ V as well.

Now consider B(x) for x ∈ R. Observe that by (ii) for any y ∈ D
we have y ≻ x, showing that B(x) is empty, hence closed. For
x = (λ, λ) ∈ D we obtain B(x) = [0, λ] whenever λ > 0 and

B(x) = {0} when λ = 0 showing that B(x) is closed in Y . When
(x1, x2) ∈ V we get B(x) = [0, x2] when x2 > 0 and B(x) = {0}
when x2 = 0 (using (iii)), showing that B(x) is closed when x ∈ V
as well.

Condition NE: Observe that B(x) is empty for every x ∈ R, so NE
fails to hold.

Representation: Suppose u : X → R represents ≿ . Define the
subset:

W = {(x1, x2) ∈ X : 0 < x1 < 1 and x2 ∈ {1, 0}}

The set W is a subset of R, since W has empty intersection with D
and V .

For each α ∈ (0, 1) we observe that (α, 1), (α, 0) ∈ W ⊂ R,
and using (i), we have (α, 1) ≻ (α, 0). Thus, we obtain u((α, 1)) >
u((α, 0)). Denote the interval (u((α, 0)), u((α, 1))) by I(α). Now,
let α, β be arbitrary elements of (0, 1) with β > α. Using (i),
we have (β, 0) ≻ (α, 1) so that u((β, 0)) > u((α, 1)). Thus,
the interval I(β) lies entirely to the right of I(α) on the real line.
Since (0, 1) is uncountable, we have an uncountable collection of
non-overlapping open intervals on the real line. This leads us to a
contradiction, since each of these intervals must contain a distinct
rational, and the set of rationals is countable.

3.2.2. Role of condition SC
As already mentioned (in remark (ii) following Theorem 2), the

lexicographic preference order in R2 shows that Theorem 2 would
not be valid if condition SC is omitted from its statement.

We know that conditions SC and NE jointly imply the substitu-
tion condition W of Wold (see Theorem 2), which by itself implies
condition NE. So, a legitimate question is whether the substitution
condition W of Wold, by itself, is sufficient for representability of
a preference order. The following example, due to Fishburn (1970,
p. 27), shows that this is not the case, and therefore limits the role
of substitutability in representation results.

Fishburn’s example is chosen in this context as the relevant
preference order is defined on an interval of the reals, so that
conditionW (and therefore condition NE) is trivially satisfied.

Example 2. Let Y = [−1, 1] and X = Y . Define the binary relation
≿ as follows. For x, y ∈ X,

x ≿ y iff (|x|, x) ≥L (|y|, y)

where ≥L is the standard lexicographic order in R2.

It is straightforward to check that the binary relation ≿ is com-
plete and transitive, and so is a preference order. Further, defining
as usual ≻ and ∼ as the asymmetric and symmetric components
of ≿, we note that, for x, y ∈ X :

x ≻ y iff either (i) |x| > |y|, or (ii) (|x| = |y|, and x > y) (8)

and for x, y ∈ X :

x ∼ y iff x = y (9)

Representation: Suppose that ≿ can be represented by a utility
function u : X → R.

Define Z = (0, 1], and note that for each x ∈ Z , we have
|−x| = |x|, and −x < 0 < x, so that x ≻ −x by (8). Thus, we
must have:

u(x) > u(−x) (10)

Define I(x) = [u(−x), u(x)] for each x ∈ Z . Then, by (10), I(x) is a
closed, non-degenerate interval in R.

Now, consider arbitrary x, y ∈ Z, with y > x. Then, I(x) =

[u(−x), u(x)] and I(y) = [u(−y), u(y)]. Note that |−y| = y > x =

|x|, and so by (8), we must have (−y) ≻ x. Since u represents ≿,
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we then obtain:

u(−y) > u(x)

Thus, I(y) is a closed degenerate interval ofR,which lies entirely to
the right of I(x) on the real line. Since Z is uncountable, we have an
uncountable collection of non-overlapping non-degenerate closed
intervals on the real line. This is a contradiction, since each of these
intervals must contain a distinct rational, and the set of rationals is
countable.

Condition SC: For x ∈ (0, 1), we have A(x) = [−1, −x) ∪ [x, 1],
which is not closed, so condition SC is violated.

Condition W: For every x ∈ X, we have xe ≡ x ∼ x, so W is
trivially satisfied. In fact, for each x ∈ X, the set I(x) = A(x) ∩ B(x)
is a singleton (by (9)) so even this more stringent requirement (that
is, I(x) being a singleton) does not guarantee representability.

3.2.3. Related literature
In this subsection we make a few remarks relating our repre-

sentation result in Theorem 2 (and in Theorem 1) to some results
already available in the literature.

(i) Perhaps, the results most directly comparable to Theorems 1
and2 are contained inMitra andOzbek (2013) andBanerjee (2014),
which unifymany of the representation results appearing earlier in
the intertemporal social literature.

In the former, Conditions SC and M are combined to obtain a
representation result, which is then seen to unify several represen-
tation results appearing in the literature on intertemporal social
choice. This can be seen to be a special case of Theorem 2, since M
implies that condition NE holds. It can also be seen to be a special
case of Theorem 1, since M implies both DM and NE, while SC
combined with NE ensures W.

Banerjee (2014) maintains SC, but replacesM by conditions DP
and NE. His result is a special case of Theorem 2, and in fact shows
that for his result, conditionDP is redundant. His result also follows
from Theorem 1, sinceDP impliesDM, while SC combinedwithNE
ensures W.

(ii) Monteiro (1987) considers a connected, separable subset F
ofX,having the property that for every x ∈ X there is some a, b ∈ F
such that a ≿ x ≿ b, called an order boundedness property. This
is used along with closed upper and lower contour sets (known
as order continuity) to establish a representation result. Condition
NE can be seen to be an order boundedness property when F is
chosen to be D. Our preference for using NE may be seen to be
in keeping with our motivation of emphasizing ease of application
over generality.

It is worth pointing out that when X = YN, order continuity
(as assumed inMonteiro (1987))would be equivalent to continuity
defined using the sup-norm topology. Scalar continuity is known to
be weaker than sup-norm continuity in this context (seeMitra and
Ozbek (2013)). This shows that Theorem 2 does not directly follow
from that of Monteiro (1987).

Theorem 2 does generalize to well-behaved metric spaces that
have the sequence space structure. One such generalization is
provided in the (Appendix A.2). As is evident from the proof of The-
orem 2, the diagonal of the sequence space facilitates the intuitive
argument at the core of theWold method; however, the argument
itself is not restricted by the role of the specific diagonal set. This
generalization is verified in Banerjee and Mitra (2018).

(iii) The idea that representability along the diagonal can be
extended to the representability of the order itself can be viewed
as measuring changes in utility across points on the diagonal as a
proxy for the difference in utilities across two bundles (to which
the diagonal elements are indifferent). With this view in mind, the
Wold approach to utility representation is applicable to a variety
of measurement problems giving rise to ‘‘path-based measures’’.

A (non-exhaustive) list of papers that develop the Wold idea in
the context of abstract measurement problems include Debreu
(1951), Farrell (1957), Hougaard and Keiding (1998) and Chambers
and Miller (2014) (in the context of efficiency measurement), and
Kalai (1977) and Thomson and Myerson (1980) (for solutions to
bargaining problems) among others.

4. Degenerate indifference sets and representation

In Section 3, we have presented Wold-type representation re-
sults, where existence of substitution possibilities plays a key role.
We have also seen that the presence of substitution possibilities
alone need not guarantee representation of preference orders.

In this section, we make an entirely different point about the
role of substitution possibilities in representation results. It is that
representation of preference orders is possible even when there is
a complete absence of substitution possibilities. We provide an ex-
ample of a strongly monotone preference order whose indifference
classes are singleton sets, which is nevertheless representable.

This example runs counter to the intuition that non-degenerate
indifference classes (sets havingmore than onepoint) arenecessary
for representation. Actually, much of this intuition is based on
our familiarity with the lexicographic preference order, which is
strongly monotone with singleton indifference sets, and is not
representable. The example provides in a sense exactly the opposite
scenario to the lexicographic order so far as the representation
issue is concerned, and is instructive in correcting that intuition.

In particular, the example shows that the substitution condition
W ofWold is not necessary for representation, even for the class of
preference orders satisfying the monotonicity conditionM.

Example 3. Consider the sequence space X = Y 2 with Y = [0, 1].
For any p ∈ Y we can express p in its binary expansion form as
follows:

p =
a1
2

+
a2
22 +

a3
23 + · · · +

an
2n + · · · (11)

where ai ∈ {0, 1} for each i ∈ N. It is well known that every
real in the interval [0, 1] can be expressed in the form (11) (also
written as a1a2...) and when such a representation is not unique
there are precisely two such representations (for instance 01111...
and 1000... both represent (1/2)).7 The analysis can now proceed
by stating that to make the binary expansion unique we will use
the terminating expansion that ends with all 0′s in the event of
non-uniqueness. Keeping this convention inmind, wewill say that
p has the binary representation {ai}when p can be expressed as (11)
using the sequence {ai}.

Now define f : Y → Y by

f (p) =
a1
4

+
a2
42 +

a3
43 + · · · +

an
4n + · · · (12)

and h : Y → Y by

h(q) = f (q)/2 (13)

Finally define u : X → R by

u(x1, x2) = f (x1) + h(x2) for all (x1, x2) ∈ X (14)

Using u, define the binary relation ≿ on X × X as:

For all x, y ∈ X, x ≿ y iff u(x1, x2) ≥ u(y1, y2) (15)

7 An equivalent way of stating this, following Royden (1988, p. 40) would be to
say that expression (11) is non-unique only in the case where p is of the form q/2n

where 0 < q < 2n is an integer.
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Preference order: The definition of ≿ in (15) is made using a real-
valued function u as defined in (14), which immediately implies
that ≿ is complete and transitive.

Strong monotonicity: Since f and h are strictly increasing on Y
strong monotonicity of ≿ on X follows immediately from (14) and
(15).

Before proceeding further, we make the following observation
(the proof of which is included in an Appendix).

Observation. Let 1 ≥ p′ > p ≥ 0 and {ai} and {a′

i} be the stan-
dard binary expansions of p and p′ respectively. Denote m(p, p′) ≡

min{i ∈ N : ai ̸= a′

i} by r. Then the following three properties
hold: (a) a′

r = 1, ar = 0, (b) there is some n ≥ (r + 1) such that
(a′

n − an) ∈ {0, 1}, (c) (4/3)/4r
≥ [f (p′) − f (p)] > (2/3)/4r .

Degenerate indifference sets:We now turn to the demonstration
that all indifference sets of ≿ are degenerate. Suppose on the
contrary, there is x, x′ in X such that x ̸= x′ and u(x) = u(x′).
For convenience, write x = (p, q) and x′

= (p′, q′). As g, h are
strictly increasing functions on Y , we can assume without loss of
generality that p′ > p and q′ < q.

The fact that u(x′) = u(x) must yield, applying (14),

f (p′) − f (p) = h(q) − h(q′) (16)

Using (13) and (16) we obtain:

f (p′) − f (p) = (1/2)[f (q) − f (q′)] (17)

Denotem(p, p′) by r andm(q, q′) by s. Two exhaustive possibilities
emerge: (i) s ≥ r; (ii) s < r. In case (i) using (c) in the Observation
above,

(1/2)[f (q) − f (q′)] ≤
(1/2)(4/3)

4s =
(2/3)
4s ≤

(2/3)
4r (18)

Also, using (c) in the Observation above, we get:

f (p′) − f (p) >
(2/3)
4r (19)

Now (18) and (19) contradict (17).
In case (ii) we have r ≥ s+1 and so, using (c) in the Observation

above, we get:

f (p′) − f (p) ≤
(4/3)
4r ≤

(4/3)
4s+1 =

(1/3)
4s (20)

On the other hand, using (c) in the Observation above, we also
have:

(1/2)[f (q) − f (q′)] >
(1/2)(2/3)

4s =
(1/3)
4s (21)

Clearly, (20) and (21) contradict (17).
Thus, every indifference set associated with ≿ must be a sin-

gleton or equivalently, degenerate. However, ≿ is representable,
which follows directly from (15).

4.0.4. Discussion

(i) In Chipman (1960), Theorems 3.3 and 3.4) a characteri-
zation of representable preference orders is presented using an
Axiom of Substitution (Axiom 4, p. 214). Our Example 3 shows
that there is a preference order where there are no substitution
possibilities, yet the preference order is representable. Hence, it
is natural to ask how Chipman’s result relates to our Example 3.
Informally, we argue that within the framework of Example 3
the non-representable preferences that Chipman characterizes are
necessarily lexicographic. The Axiom of Substitution that he uses
to characterize representability captures more than what is intu-
itively understood by substitution and hence, our Example 3 does
not refute Chipman’s characterization.

To keep the discussion self-contained and free of detailed topo-
logical concepts, we concentrate on preference orders ≿ defined
on X = Y 2, where Y = [0, 1]. Let ≿ be a strongly monotone
preference order. We will say that an ordered pair (X,≿) can be
embedded in ([0, 1] × [0, 1], ≥L) where ≥L is the standard lexi-
cographic ordering if there is a function f : X → X such that
x ≿ y iff f (x) ≥L f (y); the ordered pair (X,≿) is said to have a
lexicographic embedding in this case. Notice that order embedding
is a generalization of the concept of representability. If the image
space of the embedding function f isR, thenwehave a (real valued)
representation.

Our claim is that any ordered pair (X,≿) that is strongly mono-
tone, has singleton indifference sets and is not representable can
be embedded in ([0, 1] × [0, 1], ≥L). This follows from Beardon et
al. (2002b)8 on noting that the diagonal D is a completely ordered
subset of X and strong monotonicity can be used to show that
conditions of their Theorem 2.2 (and Remark 2.1 following it)
are satisfied. Therefore, any non-representable, stronglymonotone
preference order on X with singleton indifference sets, ranks el-
ements of X in accordance to some (non-representable) lexico-
graphic ordering of elements of X . So, for this class of preferences,
Chipman’s representation results (Theorem 3.3 and Theorem 3.4)
characterize those orders that have a lexicographic embedding.

(ii) While the subject of enquiry in Mandler (2017) is different
from ours, he provides an example of a Cantor preference ordering
that is strongly monotone, has singleton indifference sets and is
representable, thereby, meeting all the properties exhibited by
Example 3. A similar example was also communicated to us by Ray
(2013) in a private communication.

(iii) Banerjee (1964, p. 160–161)) provides an exposition of
how existence of non-degenerate indifference sets is ensured if
one postulates that preferences are representable by a continuous
utility function.9 Note that while the preference order defined
in Example 3 is representable, even when the underlying binary
relation exhibits a serious dearth of substitution possibilities, such
a representation cannot be continuous.

This is an implication of the following mathematical result,
stated and proved in Sierpinski (1965, p. 70–71).

There exists no continuous function f (x, y) of two real variables
(even continuous only with respect to each variable separately) on
X = Y 2 with Y = [0, 1] which for different pairs of real numbers
(x, y)would always assume different values.

5. Conclusion

This paper has produced results on two aspects of represen-
tation of preference orders. The first set of results (1, 2) distills
the Wold approach, by emphasizing easily verifiable conditions
which are sufficient to guarantee representation. We provide sev-
eral examples to show that our results cannot be improved upon
by dropping any of these conditions. The conditions used also
illustrate the role that substitution possibilities play in ensuring
Wold-type representation results.

Our second contribution addresses the issue of the necessity
of substitution possibilities for an order to be representable. We
show, by means of an example, that a monotone order can be
constructed with no substitution possibilities (each indifference
class is a singleton), which is nevertheless representable. Our ex-
ample provides a clear limit to the substitution implications of
representability.

8 This paper builds on the comprehensive analysis of non-representability pre-
sented in Beardon et al. (2002a).
9 Actually, Banerjee (1964, p. 161) goes on to say,‘‘Thus iso-utility points (i.e., in-

difference classes) necessarily exist if we start from a real-valued utility function.
’’ But, clearly, he means continuous real-valued utility function, in view of the
argument he has provided.



K. Banerjee, T. Mitra / Journal of Mathematical Economics 79 (2018) 65–74 73

Appendix

A.1. Proof of observation in Example 3

We present in this section the proof of the Observation from
Example 3 in Section 4.

Proof of Observation. Let a and a′ denote the sequences {ai} and
{a′

i}, the binary representations of p, p′ respectively. Since p ̸= p′

there is some i for which ai ̸= a′

i holds, which guarantees that
m(p, p′) is well defined. There are two possibilities: (i) a′

r = 0 and
ar = 1; (ii) a′

r = 1 and ar = 0.
Suppose (i) is true then,

p′
− p =

∞∑
n=r

(a′
n − an)
2n = −

1
2r +

∞∑
n=r+1

(a′
n − an)
2n

≤ −
1
2r +

∞∑
n=r+1

1
2n = 0

which contradicts the fact thatwe are given p′ > p. Thus, (i) cannot
be true, and (ii) must hold, verifying (a). For ready reference let us
note part (a) explicitly as:

If 1 ≥ p′ > p ≥ 0, then a′

r = 1 and ar = 0,
where r = m(p, p′) (A.1)

Nowconsider the possibility that (a′
n−an) = −1 for alln ≥ r+1,

then

p′
− p =

∞∑
n=r

(a′
n − an)
2n =

1
2r +

∞∑
n=r+1

(a′
n − an)
2n

= −
1
2r −

∞∑
n=r+1

1
2n = 0

would again contradict the fact that we are given p′ > p. This
shows that (b) must also be true.

To show (c) evaluate the difference [f (p′) − f (p)] as follows:

[f (p′) − f (p)] =
(a′

r − ar )
4r +

∞∑
n=r+1

(a′
n − an)
4n

=
1
4r +

∞∑
n=r+1

(a′
n − an)
4n

>
1
4r +

∞∑
n=r+1

(−1)
4n

=
1
4r −

1
4r+1

4
3

=
1
4r

2
3

> 0 (A.2)

The second line of (A2) follows from the first line using (A1) and
strict inequality in the third line follows from noting that (a′

n −

an) > −1 for at least some n ≥ r + 1. This shows that [f (p′) −

f (p)] >
(2/3)
4r .

From the second line of (A2) using (a′
n−an) ≤ 1 for all n ≥ r+1

we obtain:

[f (p′) − f (p)] =
1
4r +

∞∑
n=r+1

(a′
n − an)
4n

≤
1
4r +

∞∑
n=r+1

1
4n =

1
4r

4
3

(A.3)

proving (c).

A.2. Generalization of Theorem 2

In this subsection we present a generalization of Theorem 2 in
Section 3.2, as well as an example to illustrate how it can be used.

Consider a metric space (Y , d). Assume that Y is a connected,
separable metric space. A sequence space is a Cartesian product
of the set Y taken M times, where, M ∈ N ∪ {∞}. Denote the
sequence space YM by X . Endow X with the sup-norm topology,
with ∥x − y∥ = sup{d(xi, yi) : i = 1, . . .,M}.

We will present a result on the representability of preference
orders on X along the lines of Wold (1943). Recall that a homeo-
morphism between two topological spaces T and T ′ is a continuous
bijection f : T → T ′ such that f −1 is also continuous. Define the
upper and lower contour sets corresponding to each x in X by:

U(x) = {x′
∈ X : x′ ≿ x} ; L(x) = {x′

∈ X : x ≿ x′
}

Suppose ≿ is a preference order on X . Assume that there is a
subset T of X that is homeomorphic to Y n for some n ∈ N. Write
A(x) for U(x)∩ T and B(x) for L(x)∩ T . The following two properties
will be used in our representation result below.

Property 1. For each x ∈ X the sets A(x) and B(x) are closed in T .

Property 2. For each x ∈ X the sets A(x) and B(x) are nonempty.

Theorem 3. If ≿ is a preference order on X × X that satisfies Proper-
ties 1 and 2with respect to a subset T of X, with T homeomorphic to
Y n for some finite n, then ≿ is representable.

Proof. Step 1: (For each x ∈ X there is some t ∈ T such that
t ∼ x) Since T is homeomorphic to Y n for some finite n there is
a continuous bijection f : Y n

→ T such that f −1 is continuous as
well. Since Y n is connected (finite Cartesian product of a connected
space is connected, Theorem 23.6, p. 150, Munkres (2000)) and f is
a continuous bijection, f (Y n) = T is also connected (Theorem 23.5,
p. 150, Munkres (2000)). As T is connected, and A(x) and B(x) are
closed nonempty subsets of the connected space T theremust exist
some t ∈ A(x)∩ B(x). This shows that there is some t ∈ T such that
t ∼ x.

Step 2: (Existence of a countable order dense set of X) Since Y
is separable, the space Y n (endowed with the sup-metric) is also
separable. So there is some countable order dense subset Z of Y n.
Write Z as {z1, z2, . . .} and Z ′ as {z ′

1, z
′

2, . . .} where, z ′

i = f (zi).
This makes Z ′ a countable subset of T . We will show that Z ′ is
a countable order-dense subset of X . We first show that Z ′ is
dense in T . If U is open in T , then f −1(U) is open in Y n (as f is a
homeomorphism). As Z is dense in Y , f −1(U) ∩ Z is nonempty. It
follows now that f (z) ∈ U ∩ Z ′.

Suppose x, y ∈ X and x ≻ y. By Step 1, there exists t, t ′ ∈ T such
that t ∼ x and t ′ ∼ y. Transitivity implies (using x ≻ y) that t ≻ t ′.
Consider the sets α(t ′) = {x ∈ T : x ≻ t ′} and β(t) = {x ∈ T :

t ≻ x}. By Property 1 both sets are open in T and nonempty (since
t ∈ α(t ′) and t ′ ∈ β(t)). Since T is connected (as a continuous
image of a connected space Y ), α(t ′) ∩ β(t) must be nonempty
[if α(t ′) ∩ β(t) is empty, then the open sets α(t ′) and β(t) would
constitute a separation of T , contradicting its connectedness]. As
both α(t ′) and β(t) are open, α(t ′) ∩ β(t) is also open in T . As Z ′

is dense in T we must have [α(t ′) ∩ β(t)] ∩ Z ′ is nonempty. This
implies there is some z ′

∈ Z ′ such that t ≻ z ′
≻ t ′. Noting that

t ∼ x and t ′ ∼ y hold we have indeed shown that there is some
z ′

∈ Z ′ such that x ≻ z ′
≻ y establishing that Z ′ is countable order-

dense in X . By Lemma II in Debreu (1954), we conclude that ≿ is
representable.

Remark. In order to see how Theorem 2 in Section 3.2 follows
from Theorem 3, let I be some non-degenerate interval in R and
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X = IM forM ∈ N∪{∞}. Observe that here Y = I is separable and
connected. Let us define T = {λe : λ ∈ I}. It is easily seen that T is
homeomorphic to Y ≡ I with A(x) = U(x) ∩ T and B(x) = L(x) ∩ T .

If ≿ is a preference order satisfying conditions SC and NE, then
Properties 1 and 2 are satisfied, and Theorem 3 implies that ≿ is
representable.

Example 4 (Galperti and Strulovici, 2017). Let Y be a connected,
separable metric space and X = Y∞ (hence,M = ∞). Galperti and
Strulovici (2017) consider the representability of preference orders
on X satisfying the following two conditions:

Continuity (C): For all c ∈ X the sets U(c) and L(c) are closed in X .

Future Constant-Flow Dominance (FCFD): For all c ∈ X , there
exists x, y ∈ Y such that (c1, x, x, . . .) ≾ c ≾ (c1, y, y, . . .).

To use Theorem 3, we first define a suitable T ⊂ X as follows:

T = {x ∈ X : x = (a, b, b, . . .) for some a, b ∈ Y }

We nowmake the following observations:
(i) The map f : Y 2

→ T given by f (a, b) = (a, b, b, . . .)
is a continuous bijection with a continuous inverse. Hence T is
homeomorphic to Y 2.

(ii) As U(c) and L(c) are closed in X, the sets A(c) = U(c) ∩ T
and B(c) = L(c) ∩ T are closed in the relative topology on T . So,
Property 1 is satisfied.

(iii) Consider the setsA(c) andB(c) definedusing this T .Wehave
A(c) = {t ∈ T : t ≿ c} and B(c) = {t ∈ T : c ≿ t}. Given any
c ∈ X, by FCFD, there is some x, y ∈ Y such that (c1, x, x, . . .) ≾
c ≾ (c1, y, y, . . .). Notice that (c1, x, x, . . .), (c1, y, y, . . .) ∈ T and
hence, FCFD implies that A(c) and B(c) are nonempty, showing that
Property 2 is satisfied.

Thus, by Theorem 3, the preference order satisfying C and FCFD
is representable.

Remark. While using a stronger assumption on continuity (C)
than that stated in Property 1, Galperti and Strulovici (2017) obtain
the stronger result of continuous representation of altruistic pref-
erences. The representation (not necessarily continuous) of such
preferences is a direct consequence of Theorem 3.
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